2016-02-29 15:58:21
并非所有的问题都适合用机器学习解决(很多逻辑清晰的问题用规则能很高效和准确地处理),也没有一个机器学习算法可以通用于所有问题。咱们先来了解了解,机器学习,到底关心和解决什么样的问题。 从功能的角度分类,机器学习在一定量级的数据上,可以解决下列问题: 1.分类问题 根据数据样本上抽取出的特征,判定其属于有限个类别中的哪一个。比如: 垃圾邮件识别(结果类别:1、垃圾邮件 2、正常邮件) 文本情感褒贬分析(结果类别:1、褒 2、贬) 图像内容识别识别(结果类别:1、喵星人 2、汪星人 3、人类 4、草泥马 5、都不是) 2.回归问题 根据数据样本上抽取出的特征,预测一个连续值的结果。比如: 星爷《美人鱼》票房 大帝都2个月后的房价 隔壁熊孩子一天来你家几次,宠幸你多少玩具 3.聚类问题 根据数据样本上抽取出的特征,让样本抱抱团(相近/相关的样本在一团内)比如: google的新闻分类 用户群体划分 我们再把上述常见问题划到机器学习最典型的2个分类上。 分类与回归问题需要用已知结果的数据做训练,属于“监督学习” 聚类的问题不需要已知标签,属于“非监督学习”。 如果在IT行业(尤其是互联网)里溜达一圈,你会发现机器学习在以下热点问题中有广泛应用: 1.计算机视觉 典型的应用包括:人脸识别、车牌识别、扫描文字识别、图片内容识别、图片搜索等等。 2.自然语言处理 典型的应用包括:搜索引擎智能匹配、文本内容理解、文本情绪判断,语音识别、输入法、机器翻译等等。 3.社会网络分析 典型的应用包括:用户画像、网络关联分析、欺诈作弊发现、热点发现等等。 4.推荐 典型的应用包括:虾米音乐的“歌曲推荐”,某宝的“猜你喜欢”等等。
|