我们最终希望将这套服务扩展到全球数十亿用户,但为了要做到这点,AI在没有人类帮助的情况下,需要能够自身处理大部分请求。要做到这一点,我们需要在M上建立上图中所有不同的功能——语言,视觉,预测和规划,这样它就能理解每个请求背后的上下文信息,然后未雨绸缪。这确实是一个巨大的挑战,而且我们才刚刚开始。但是早期研究结果是有希望的。比如,最近我们在M上部署了新开发的MemNets系统,促使M加快了学习:当有人要求M帮忙预定鲜花,M现在知道首先要问的两个问题是“你的预算是多少?”和“鲜花要送到哪?”
最后一点:有些人可能会这么认为,“那又怎样?人照样能够做这些事情”。当然,你说的没错——但我们大多数人没有专门的私人助理。而这就是类似于M服务提供的“强大能力”:我们可以为这世界上数十亿人提供他们自己的数字助理,这样他们就能够花费更少的时间在每天琐事上,而有更多时间处理真正重要的事务。我们的AI研究——探索连通性的全新方式以及使用Oculus VR身临其境地感受分享的经验——需要长期的努力。明白这一切技术原理,这将需要多年的艰苦工作,但如果我们能够正确理解这些新技术,我们离连通世界又近了一步。
想要了解更多关于我们人工智能研究以及已经产生的影响,那就看看这个视频。
视频:https://www.facebook.com/Engineering/videos/10153621590557200/
英文原文:Teaching machines to see and understand: Advances in AI research(译者/刘翔宇 审校/赵屹华、朱正贵 责编/仲浩)
关于译者:刘翔宇,中通软开发工程师,关注机器学习、神经网络、模式识别。