# initialize parameters with zeros (≈ 1 line of code)
w, b = initialize_with_zeros(X_train.shape[0]) # Gradient descent (≈ 1 line of code)
parameters, grads, costs = backwize(w, b, X_train, Y_train, num_iterations, learning_rate, print_cost) # Retrieve parameters w and b from dictionary "parameters"
w = parameters["w"]
b = parameters["b"] # Predict test/train set examples (≈ 2 lines of code)