摘要:类人智能一直是人工智能和机器人领域的研究重点,如何完善周边信息及对大数据的获取、处理、存储、信息挖掘更是当前研究热点。文中根据人体生物特征,利用多传感器综合对周边环境进行完整,利用数据降维与稀疏学习的技术完成大数据的处理及信息挖掘,并建立一种机器人自主思维模型。进一步提升了机器人的智能性,使之能对实时环境的空间大数据实行处理,并做出自主性反应,具有更强实用性。
关键词:生物特征; 大数据; 机器思维
中图分类号:TP 242.6 文献标志码:A 文章编号:1002-2333(2015)03-0037-04
A Robot Independent Thinking
DENG Hao, ZHOU Yiting, XIE Congshuang
(School of Information Engineering,Southwest University of Science and Technology,Mianyang 621010,China)
Abstract: Humanoid intelligence has been the research priority in the field of artificial intelligence and robotics. Completingcircumjacent information, obtaining and processing Big Data, storing and mining Big Data, are currently hot focus. Based on the
human body biologic characteristic,this paper collects circumjacent information by using multi -sensor integration,accomplishes Big Data processing and mining by using dimensionality reduction and technology of Sparse Learning ,and buildsa mental model of independent thinking of robots. It further enhances the intelligence of the robot,so the robot can carry out theprocessing of the space Big Data in a real-time environment and make voluntary response with more practicability.
Key words: biometric; Big Data; thinking machine
[参考文献]
[1] 陈巍. 聚焦“机器思维” 的跨学科思维盛宴[J]. 科技导报,2011,29(14):80.
[2] 翟心昱.基于仿人脑认知计算模型的机器人视觉学习方法[D].杭州:浙江工业大学,2012.
[3] 张丽.基于HTN 方法的记忆机器人任务规划研究[D].哈尔滨:哈尔滨工业大学,2010.
[4] United Nations Global Pulse.2012,Big Data for Development:Challenges & Opportunities[R].2012.
[5] Office of Science and Technology Policy.Executive Office of thePresident.2012,Fact Sheet:Big Data across the Federal Government[R/OL][. 2012-12-21].Http://www.whiteHouse.gov/Ostp.
[6] Office of Science and Technology Policy.Executive Office of thePresident.2012,Obama Administration Unveils “Big Data”Initiative:Announces $200 Million in New R&D Investments[R/OL][. 2012-03-19].http://WWW.WhiteHouse.gov/OSTP.
[7] Mckinsey Global Institute.2011 Big Data the Next Frontier forInnovation,Competition,and Productivity[R].2011.
[8] Rajaraman A,Ullman J D.Mining of Massive Data -sets[M].Cambridge:Cambridge University Press,2011.
[9] Lapkin A.Hype Cycle for Big Data[R].Gartner ,Inc.2012.
[10] Miller H J,Han J.Geographic Data Mining and KnowledgeDiscovery[M]. London:Taylor and Francis,2009.
[11] Barabasi A L.Bursts:The Hid den Patterns Behind EverythingWe Do[M].Plume Books,2011.
[12] 舍恩伯格,库克耶.大数据时代:生活、工作与思维的大变革[M].盛杨燕,周涛,译.杭州:浙江人民出版社,2012.
[13] 李健宏.人工智能中的机器学习研究及其应用[J].江西科技师范学院学报,2004(5):84-86.
[14] 马小龙.数据降维方法综述[D].北京:清华大学,2005.
[15] 宋彩风,刘伟锋,王延江. 基于稀疏学习的人脸表情识别[J].山东科技大学学报(自然科学版),2013,32(3):28-34.
[16] 黄玲,李琳,王薇,等. 基于Sparse K-SVD 学习字典的语音增强方法[J]. 厦门大学学报(自然科学版),2014,53(1):36-40.(编辑立明)