并非所有的问题都适合用机器学习解决(很多逻辑清晰的问题用规则能很高效和准确地处理),也没有一个机器学习算法可以通用于所有问题。咱们先来了解了解,机器学习,到底关心和解决什么样的问题。
从功能的角度分类,机器学习在一定量级的数据上,可以解决下列问题:
1.分类问题
根据数据样本上抽取出的特征,判定其属于有限个类别中的哪一个。比如:
垃圾邮件识别(结果类别:1、垃圾邮件 2、正常邮件)
文本情感褒贬分析(结果类别:1、褒 2、贬)
图像内容识别识别(结果类别:1、喵星人 2、汪星人 3、人类 4、草泥马 5、都不是)
2.回归问题
根据数据样本上抽取出的特征,预测一个连续值的结果。比如:
星爷《美人鱼》票房
大帝都2个月后的房价
隔壁熊孩子一天来你家几次,宠幸你多少玩具
3.聚类问题
根据数据样本上抽取出的特征,让样本抱抱团(相近/相关的样本在一团内)比如:
google的新闻分类
用户群体划分
我们再把上述常见问题划到机器学习最典型的2个分类上。
分类与回归问题需要用已知结果的数据做训练,属于“监督学习”
聚类的问题不需要已知标签,属于“非监督学习”。
如果在IT行业(尤其是互联网)里溜达一圈,你会发现机器学习在以下热点问题中有广泛应用:
1.计算机视觉
典型的应用包括:人脸识别、车牌识别、扫描文字识别、图片内容识别、图片搜索等等。
2.自然语言处理
典型的应用包括:搜索引擎智能匹配、文本内容理解、文本情绪判断,语音识别、输入法、机器翻译等等。
3.社会网络分析
典型的应用包括:用户画像、网络关联分析、欺诈作弊发现、热点发现等等。
4.推荐
典型的应用包括:虾米音乐的“歌曲推荐”,某宝的“猜你喜欢”等等。
欢迎光临 机器人与人工智能爱好者论坛 (http://robot-ai.org/) | Powered by Discuz! X3.2 |